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1 Kernels

Motivation - the XOR problem: cannot be linearly separated in 2 dimensions, but can be in higher
dimensionality. Kernels can efficiently compute dot product in infinite dimensional space, without
actually transition the data to that space.

Definition 1.1 (Hilbert space). A Hilbert space is a complete space with inner product.

Definition 1.2 (Kernel). Let X be a non-empty set. A function k : X x X — R is called a kernel if there
exists a Hilbert space H and a map ¢ : X — H such that for all x,2’ € X, k(z,2") = (¢p(x), d(z')) .

For example, X =R, ¢(x) = .

Definition 1.3 (Positive semi-definite functions). A symmetric function k : X x X — R is called
positive semi-definite (PSD) if for all x1,...,z, € X and ay,...,a, € R,

n
Z aiajk(xi,wj) Z 0.
i,j=1

Lemma 1.4. Let X be a non-empty set, H be a Hilbert space and let k be a kernel function. Then k is
PSD.

Proof. Choose some z1,...,x, € X and ay,...,a, € R. Then

Z a;aik(x;, ;) = Z Z(ai¢($i), a;d(x;))n

i,j=1 i=1 j=1

= <Z ai(b(mi), Z aj¢(xj)>
i=1 J=1

2

H

> 0.
H

Z a;p(z;)

The converse holds as well:

Lemma 1.5. A symmelric positive definite function is an inner product in some Hilbert space (and
thus a kernel)



Proof. We first need to define H, its inner product, and ¢, and then show that k(z,z’) = (¢(x), p(x’)) 3.
We define H as the space of linear combinations of functions k(-, z;), i.e.,

{Zal x;) aiER,xieX,meN}.

We then define the inner product as

<Zaik(-,xi),2ajk(~7mj)> :ZZ k(xi, xj).
i=1 j=1 i=1 j=1
Note that since k is PSD, this inner product is valid. Finally, we see that by defining ¢(z) = k(-, ) we
have k(x,:c’) = <¢(I),¢({E,)>H U
Lemma 1.6. Sum of kernels is a kernel.
Proof. By using Lemmas [T.4] and [I.5] we get

Z a;a; kl(l‘l,l‘J) + k2 .ﬁ“l'] Z a’la/jkl xz;x] Z aiaij('riaxj) >0

1,7=1 1,7=1 i,7=1

O

Definition 1.7 (RBF kernel). The Radial Basis Function kernel (aka Gaussian kernel) is defined as

P
k(z,2") = exp (_:r232:||> .
o

Lemma 1.8. The RBF kernel is a valid kernel, whose corresponding feature map is infinite-dimensional.

Proof. See homework.
O

2 Reproducing Kernel Hilbert Spaces

Definition 2.1 (RKHS). Let H be a Hilbert space of real-valued functions on X. A function k : X xX —
R is called a reproducing kernel of H, and H is called a reproducing kernel Hilbert space if k satisfies:

1. For everyx € X, k(-,x) € H
2. The reproducing property: for every x € X and f € H, {f, k(-,z))x = f(x).

In particular, (k(-,y), k(-, 2))3 = k(z,y), hence a reproducing kernel is a valid kernel. ¢(z) = k(-, z)
is often called the canonical feature map. The following theorem says the converse.

Theorem 2.2 (Moore-Aronszajn). Every symmetric, PSD kernel k : X x X — R defines a RKHS H,
for which k is the reproducing kernel.



Proof. Define Ho = span{¢(z) : € X}, with the inner product

<Z a;i$(zi), Z aj¢(xj)> = Z Z aiajk(zi, z;),
i=1 j=1

Ho | i=1i=1

hence (¢(x), d(y))no = k(z,y). To make Hy a Hilbert space, we need to consider its completion H,
which is composed of elements of the form f = Y77, a;¢(z;), where the sum converges. We can now
verify the reproducing property holds:

= aid(x), ¢(x)) = Z aik(z;, x) = Z a;p(z;)(z) = f(z).

i=1
It remains to show that # is unique. Let G be an RKHS for which k is a reproducing kernel. Then for
every x,y € X, (¢(x),d(y))n = k(z,y) = (¢(z),d(y))g. Hence, by linearity, the inner products in H
and G equal on span{¢(z) : z € X'}. Then H C G, since G is complete and contains Hy. We will show
that G C H. Let f € G and write f = fy + fu1, where f € H and f» € H'. Then

f(@) = (0(x), flg = (0(x), fu) + (0(2), frr) = (¢(x), F)n = fu(2),
since ¢(z) € H, so (¢(z), fy+) =0. Then f € H and hence H = G, which concludes the proof.
O

The representer theorem shows that the minimizer of the empirical risk (i.e., train loss) over an
RKHS can be obtained as a linear combination of feature maps of training points. This is a significant
result, as it simplifies the search for optimal solutions to a linear program.

Theorem 2.3 (Representer thm). Let k be a kernel function and H be the corresponding RKHS. We are
provided with training data (x1,Yy1),- .. (Tn,Yn), an error function E : R? — R and a strictly increasing
regularizer function g : [0,00) — R. Let f* be a minimizer of the reqularized empirical risk, i.e.,

7= argmin (B(f(21),41), -, B(F(2n), yn)) + g (1))

Then f* =31 a;p(x;), for some a;’s.

Proof. We decompose every function f € H to a component in span{¢(x1), ..., ¢(x,)} and an orthogonal
component: f = > "  a;¢(x;) + v, where (¢(z;),v) = 0 for all i = 1,...,n. Then by the reproducing

property,
<Zaz¢x1 +U¢1’] > Zaz xl)xj

=1

Hence the values of f on the training data do not depend on v, and consequently the errors E(f(x;), ;).
Finally, considering the regularization term,

g(lfl) =g (
+ol?

n
o
i=1

Z az¢ xz

I
S

> aip(x)

)



where we have used orthogonality and the fact that ¢ is increasing. Therefore v = 0 does not affect the
training error and strictly reduces the regularization penalty. Therefore v =0, so f* = >""" | a;¢(x;). O
3 Application: kernel ridge regression

Given train data (x;,y;) ¢ = 1,...n, we assume a model y = f(x) + ¢, and seek for f* such that

yi = f*(x;) + ¢ for all i. Let H be a RKHS with kernel k. Since f can be arbitrarily expressive, we
need to regularize it. The optimization is therefore

n A
arg 1;161]{1} ;((yi) — f(@)* + §||f||3ft-

By the representer theorem, we know that f = Z?Zl aj¢(x;), for some a = (ay,...,a,)T, where

é(x;) = k(-,x;). In vector notation, we define y = (y1,...,y,)7, and the kernel matrix K, such that
kij = k(x;,x;). Then the miminization problem becomes

A
argmin ||y — Kal* + +§aTKa.
a
Taking gradient wrt a, using the fact that K is symmetric, and equating to zero, we get
K?a— Ky + \Ka = 0.

Rearranging, we get
K(K 4+ M)a = Ky.

Assuming k is PD, and multiplying from the left by K1, we get
a=(K+M)"ty.

For prediction at a new test point z we then have
§(@) = aTo(z)(@) = 3 aik(wi, @) = yT (K + M)~ k()
i=1

where k(x) = (k(x,21),...,k(z,2,))7.
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